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DEVELOPMENT OF A CLASS-SPECIFIC MODULE FOR HYPERBOLIC,
FREQUENCY-MODULATED SIGNAL S

1 . INTRODUCTION

The class-specific method (CSM) (reference 1) is a novel approach to signa l
classification . Classical Bayesian signal classification approaches use a common featur e
set for all signal classes from which an estimate of the probability distribution of th e
features is computed and decision boundaries are constructed . If the feature dimension i s
too high, severe errors in the probability-distribution estimate will occur, which will lea d
to classification errors . It has been shown (reference 2) that if the probability distributio n
meets certain smoothness assumptions, the amount of training data required fo r
nonparametric estimators rises exponentially with feature dimension . If the feature
dimension is too low, the insufficient information will cause the signal classes to becom e
overlapped in feature space and cause classification errors . CSM, on the other hand, uses
individual low-dimensional feature sets tailored to each signal class to overcome thes e
difficulties . The key components in a class-specific classifier are the feature extractio n
modules designed for each signal class of interest . Understanding the process required i n
designing a module is fundamental to building a class-specific classifier .

In this report, the development of a module for hyperbolic, frequency-modulate d
(HFM) signals is presented . The objective is to describe the development of the HF M
module and to acquaint the CSM novice with the general considerations in modul e
design .

Section 2 provides a brief summary of CSM fundamentals, and section 3 provides a
detailed description of the development of the HFM module .
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2 . FUNDAMENTAL CSM CONCEPT S

This section summarizes some of the important fundamental concepts in developin g
a class-specific feature module . For a detailed description of CSM, see reference 1 ,
which also contains examples of other types of feature modules .

The CSM operates by extracting feature sets z i from the raw data x, where th e
features computed by module i are specific to the ith data class of M class hypotheses H, .
In this manner, the feature spaces are of low dimension, thus avoiding the "curse o f
dimensionality" inherent when applying the classical Bayesian approach to classification .
For low-dimensional feature spaces, the probability density functions (PDFs )
p(z . H . ), i = 1, . . ., M, for each of the M data classes can be accurately estimated usin g
training data .

In classifying a raw data event x, CSM computes features corresponding to eac h
class z, = T;(x), evaluates the likelihoods p(z . H . ), and then converts the likelihood s

back to the raw data domain using the PDF projection given a s

p,, (x Hi
p(

x Ho,i
fr( z ; H1), (I )

p( z i Ho 1;) _

which is an approximation of p(x Hi ) . Substituting equation (1) into the expression for
the optimal Bayesian classifier given b y

=arg max p(x Hi ) p(H i ) for i = l, . . ., M,

	

(2)

where p(Hi ) is the prior probability for class H i , results in the CSM classifier ,

= arg max (3 )p(z i Hi ) p(H,) for i = 1, . . .,M .
p( x I Ho , ; )

p(z i I Ho , i) _

The ratio

J(x,T,,Ho11) = P( x Ho.i )

p( z r I
H

o.i)

(4)

in equation (3) is called the "J-function," which is the correction factor necessary t o
convert the feature PDFs to data PDFs . The J-function is based on a class-specifi c
reference hypothesis Ho ; and allows for the fair comparison of likelihoods computed
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from different feature sets. Guidelines for choosing an appropriate 14 1 are given in
reference I . In general, H 0 , should be selected so that both the numerator and th e
denominator of the J-function can be determined in closed form, or to a goo d
approximation, even in the (far) tails of the distribution . It is extremely important that the
J-function be accurate to ensure that pp (x H,) results in a valid PDF . As a goal, one
should strive to identify a feature set z of low dimension and H 0 ,, combination that
results in z being an approximately sufficient statistic for differentiating H0, ; from H . The
better this sufficiency condition can be approximated, the more accurately the projecte d
PDF will approximate p(x I H i ) . The general form of a class-specific feature modul e
contains both feature computation z = T(x) and J-function calculation J(x, T, Ho) .

Once a module has been developed, it must be validated to ensure that the J-functio n

is accurate. A test, referred to as the "acid test," has been devised that provides an end-to -
end validation of the module . This is done by designing a hypothesis H , . for which the
PDF p(x H,) is exactly known and for which a large number of synthetic raw dat a
samples can be generated. The data are converted to features and used to estimate the
PDF p(z I H r ) . By applying the PDF projection in equation (1) to this estimate, th e
projected PDF p,, (x H ,. ) is obtained. The accuracy of the J-function can then b e
validated by comparing the exact PDF values of the data p(x H,,) with the projected
PDF values p p (x H , ) . This is done by plotting the p p (x H, ) values on one axis and
the p(x H,. ) values on the other axis for each synthetic data event . The J-function i s
deemed accurate if the points lie near the y = x line .

Feature modules can be linked together in series to form more sophisticate d
processing chains . In this case, the PDF projection is applied recursively, resulting in th e
overall J-function being the product of the individual J-functions of all the modules in th e
chain. Typically, computations on PDFs are done in the log domain, so the overal l
J-function would be the sum of the log 1-function values . For example, assuming a chain
comprising of three feature modules, equation (1) would becom e

logp p (x~H ,i )=j,+j,+j3 +logp(z1H .),

	

(5 )

where jh is the log of the J-function of module k, and z is the feature vector at the outpu t

of module 3 .
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3. CLASS-SPECIFIC HFM MODULE DEVELOPMEN T

The design of a class-specific module is an intricate process requiring significan t
attention to detail . This section presents the steps taken in the development of a modul e
for HFM signals . The module uses a matched filter (MF) as one of its components, a s
well as the progression of modules developed .

3.1 HFM SIGNAL MODEL AND MATCHED FILTE R

One of the components of the HFM module is an MF . The coefficients of the MF
consist of samples of an HFM replica signal modeled after the HFM signal of interest . The
HFM replica was developed from analysis of an experimentally obtained set of trainin g
signals . Matched filtering an HFM signal with its replica produces an impulse-like signal .
This signal compression is a desirable property in that it facilitates the statistical modelin g
of feature sequences using a hidden Markov model (reference 3) . For this case, the signa l
of interest was an HFM signal that swept from frequencies F1 to F2 in T milliseconds .
Figure 1 is a spectrogram of a representative HFM signal, with time on the x-axis an d
frequency on the y-axis . Figure 2 is a spectrogram of the HFM replica signal . The HFM
signal model can readily generate signals of any bandwidth and duration by simpl y
changing the input parameters .

Time

Figure 1 . Spectrogram of HFM Signal
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Time

Figure 2. Spectrogram of HFM Replica

The power spectral density (PSD) of this HFM signal has a negative slope across it s

signal band as seen in figure 3 . This is because the instantaneous frequency change s

more rapidly as it increases . Therefore, since the signal dwells for less time at the highe r

frequencies, the signal power decreases with increasing frequency . One of the

considerations when developing a class-specific module is the requirement to have filter s
with flat spectral responses, so that when a white process is input, a band-limited whit e

process will be produced at the output . This is a necessary requirement for deriving th e

J-function for the module . Given this, the PSD of the HFM signal was flattened b y

multiplying the signal by,' a" .,/ c?t , the square-root of the derivative of its instantaneou s

frequency.T. The PSD of the HFM signal after flattening is shown in figure 4 .

4

m 20 n
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Figure 3. PSD of HFM Replica
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Figure 4. PSD of HFM Replica After Flattening

Using the replica, the matched-filtering operation can be viewed as the matrix -
vector product y = Wx, where y is the vector of samples at the MF output, x is a vecto r
containing the input signal samples, and W is a circulant matrix :

bN. b, b i 0 0 0 0 0

0 b N b3 b, b~ 0 0 0 0

0 0 by b 3 b, b i 0 0 0

0 0 0 b N b 3 b, b, 0 0

0 0 0 0 bN b; b, b i 0
W= (6)

0 0 0 0 0 bN b3 b, b,

b, 0 0 0 0 0 bN b3 b ,

b, b i 0 0 0 0 0 bti, •• - h 3

b, b~ 0 0 0 0 0 b N

b 3 b, b~ 0 0 0 0 0 bN

Each row of the matrix consists of a circularly shifted set of the MF coefficients b ; zero
padded out to the length of x . This expression can be simplified by replacing W with it s
eigen-decomposition to produce y = UDU" x, where the columns of U are th e
eigenvectors and D is a diagonal matrix containing the eigenvalues of W . The
eigenvectors of a circulant matrix are discrete Fourier transform (DFT) basis vectors, an d
the eigenvalues are equal to the DFT of its first row . Premultiplying both sides of th e
equation by U" results in Ully =

	

Observe on the left side of the equation tha t
U " y = y is the DFT of y and on the right U " x = is the DFT of x. The matched-
filtering operation in the frequency domain is then y = Di . If h is a vector consisting o f
the diagonal elements of D, then the MF operation is simply the element-by-elemen t
product of x with h .
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3.2 HFM MODULE DEVELOPMENT

As is often the case in the development of CSM modules, the development of th e
HFM module went through a number of iterations before the final design was reached . It
is instructive to observe the process that led to the final design . Therefore, the initia l
module designs and the motivation for changing them, which led to the final HF M
module design, are described .

Design 1

The initial idea for the HFM module feature computation was to separate the inpu t
signal into in-band and out-band components, compute features from each separately, an d
combine them to compose the feature set . The in-band component is that portion of the
input signal whose frequency content is within the HFM replica band, i .e ., F 1 to F2, wit h
the remainder of the signal considered to be the out-band component .

As a first step in verifying the operation of the module and deriving the J-function ,
the features were chosen to simply be the total in-band power Pm and the total out-band
power PoB . A block diagram of the process is shown in figure 5 . The upper portion of
the diagram shows the pre-processing performed on the replica prior to it being input t o
the MF block . The replica signal is first transformed to the frequency domain using a fas t
Fourier transform (FFT) . Its frequency spectrum is then conditioned so that the
magnitudes of the FFT bins in the signal band are all normalized to one and the FFT bin s
outside of this band are set to zero, thus approximating a "brick wall" filter . The phase of
the FFT bins remains unchanged . This conditioned spectrum is shown in figure 6 .

One reason for conditioning the spectrum in this manner is to maintai n
orthogonality (independence) between the in-band and out-band bins . In other words, i t
is desired to have no sharing of energy between the in-band and out-band regions at th e
band edges . With CSM, accounting for all of the energy in the event is very important .
Independence between the in-band and out-band feature spaces is also a desirabl e
property since it allows a much easier derivation of the denominator of the J-function .
Under the assumption of independence ,

p( z I Ho) = P([P,B, Poe ] I Ho) = P(PIB I Ho)P(Pos I H o) .

	

(7 )

Thus, the joint PDF of the features under Ho is simply equal to the product of thei r
individual PDFs under Ho .

8



Out-ban d
powe r
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Figure 6. Magnitude Spectrum of HFM Replica After Conditioning

Processing of the input signal x begins by transformation to the frequency domai n
using an N-point FFT denoted , followed by matched-filtering with the conditioned
replica. (The matched-filtering operation is performed as described in section 3 .1 .) At the
output of the MF, the FFT bins have been separated into a set of M in-band bins and a se t
of N/2 - M out-band bins . Since the MF has a single-sided spectrum, which results in a n
output signal with a single-sided spectrum, it was decided to compute the relative power s
using only the positive frequencies indexed 0 to N/2. The in-band bins c, are thos e
encompassing the HFM signal band, and they contain the matched-filtering result . The
out-band bins c o are the remaining bins, and they contain their coefficients prior to the
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matched-filtering operation, i .e ., they are not all zeros . The out-band power is then
computed as

l n . „, - M

POBN ( 8 )

The M in-band bins are input to an inverse FFT (IFFT) and transformed back to a
time series r . Note that since the Mbins are used in the IFFT, the result is equivalent t o
base-banding and decimating the MF output byN/M. To preserve the proper signal power
during this operation, the c, are scaled by .I M / N prior to the IFFT operation . To
illustrate, if the input signal had a white spectrum with magnitude A, the magnitudes of c ,
would all equal A at the output of the MF . Total power prior to decimation would then be

P=
1
-IA- =

MA '
(9 )

N „

	

N

Without scaling, the total power after base-banding and decimation would be

(10)P'=-l A ' =
MA '

M M

therefore, scaling the c, by -JM / N preserves signal power .

Total in-band power is then computed from r, the time-domain MF output, as

P,B =

	

r(i) .
i= 1

Now, consider the derivation of the J-function for this module . Since the choice of
a reference hypothesis is left to the module developer, let the reference hypothesis Ho be
independent, zero-mean, Gaussian noise of variance 1 . The numerator of the log J -
function is then

N

	

I(
v

log p(x 1 H o ) = --log 2,r-- 1x(i) -
2

	

2
(12)

A library of MATLAB functions called the Class-Specific Toolkit exists at the Nava l
Undersea Warfare Center Division, Newport, RI ; this library contains a collection of pre -
tested class-specific modules, including a function to evaluate equation (12) for a give n
data event x .
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To derive the denominator of the J-function, one needs to determine the statistics a t
the output of each of the processing blocks in the module . Under Ho , at the output of th e
FFT the bins are independent, zero-mean, Gaussian random variables (RVs) wit h
variance N . Bins 0 and N/2 are real-valued, while the rest are complex valued . The
statistics remain the same for the in-band and out-band bins at the output of the MF .

Focusing first on the out-band power computation, the magnitude-squarin g
operation on the co results in independent chi-squared RVs 'CO . The bins 0 and N/2 are
chi-squared distributed with 1 degree of freedom scaled by N and denoted by p, . (c) :

1

	

c
P, . (c) _ - N,577z.

N 1
exp -

2 N

Bins 1 through N/2-1 are chi-squared with 2 degrees of freedom scaled by N/2 and
denoted by p~. (c) :

1

	

c;
( c ) =

N
exp{-

N

	

The complete log-PDF of

	

under Ho, is then

log p( co I Ho) =loge,(c„)I logpc(c;) + log p,.(c,v„z),

	

(15)
ic o

where the summation in the second term is over all of the out-band bins, excluding bins 0
and N/2.

The result of summing the magnitude-squared bins PFJ , is also a chi-square d
distributed RV . However, there is a problem with determining the statistics of P0 B

because it is the sum of chi-squared RVs of different scale factors . In order for the PDF

of PoB to be a proper chi-squared distribution, the distributions of all of the magnitude -

squared bins must have the same scale factor . One can accomplish this by scaling th e
bins c o prior to the magnitude-squaring operation . If the real-valued bins are multiplie d
by 1/ i and the complex-valued bins by J2 / N , all of the bins after magnitude -
squaring will be chi-squared distributed scaled by 1 . With that, the PDF p(P0B I Ho ) is

determined to be chi-squared with 2(N / 2 - M - 2) + 2 degrees of freedom scaled b y
1/N . The Class-Specific Toolkit also contains a function to evaluate the log-PDF of a
chi-squared RV given its degrees of freedom and scale .

Turning now to the statistics for the in-band bins, applying the scale facto r
M / N to the bins at the MF output results in the IFFT output r consisting of samples of

independent zero-mean Gaussian RVs with variance 1 . The RVs are independent due t o

(13)

(14)
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the conditioning of the replica to have a flat spectrum coupled with using only the M in-
band bins in the IFFT . Under Ho, this results in a white spectrum being input to the IFFT .
Note that the time series r is complex-valued because its spectrum is not symmetric abou t
0 Hz (even spectrum) . The spectrum of the real-valued input signal x is even, but the M F
output retains only the positive frequencies that are then used in the decimation/base-
banding approach to computing r . Therefore, the elements of r - are independen t
chi-squared RVs with 2 degrees of freedom scaled by 1/2 . Computing the in-band power
using equation (11) results in the PDF p(P,B I Ho ) being chi-squared distributed with 2M

degrees of freedom scaled by 1/2 . The complete log J-function is then

j = log p(x I Ho) - log P(P,8 I Ho) - log P( P )8 I Ho) .

	

( 16)

These theoretically derived statistics were verified by applying a large number o f
samples of independent, zero-mean, unit-variance, Gaussian RVs to the input of th e
module, and then computing estimates of the statistics at the outputs of each of th e
processing blocks. However, this module did not pass the acid test, which indicates tha t
this feature set is not a sufficient statistic for differentiating H, from Ho1 . A possible
reason for this is that the processing did not result in exact orthogonal sets of in-band an d
out-band bins used to compute P,B and P,B , thus violating the independence assumption .
Nevertheless, this development provided a good illustration in the steps required i n
deriving the 1-function for a simple case of two features .

Design 2

The next design is a modification to the HFM module that computes a large r
dimension feature set that is an approximate sufficient statistic . This module design use s
P, B and parameters of r - as features instead of P,B . For this case, in addition to P, B , the
selected features are the N largest peaks of Ir - , denoted Irl ti, , the associated indices 2 o f

I r - , and the residual power P. = Ir - rIN . The joint PDF under Ho of the order
statistics for r and P, . has been derived (reference 4) assuming that the process they ar e
computed from is chi-squared with 2 degrees of freedom . A module exists in the Class -
Specific Toolkit to compute this joint PDF under Ho . The joint PDF of the indices i s
uniformly distributed between 1 and L, where L is the number of samples in Id - and i s
given by

	 1	P( Ho) L(L-1)(L-2) . . .(L-N+I)

The complete log J-function for this module is the n

j = log P( x 1 Ho) - log P(1 I Ho) - log P(rI N' P, . 1 Ho) - log P(P,e I H o) ,

	

( 18)

(17)

12



where log p(l rI

	

1 H o ) is computed by the order-statistics module .

However, the order-statistics module suggests the use of a floating-referenc e
hypothesis-one that depends on the data . (This concept is explained in more detail i n
reference l .) In general, a floating-reference hypothesis is used to prevent numerica l
problems when computing the J-function . It is used to position H o to simultaneously
maximize the numerator and denominator of the J-function . This prevents x and z from
being evaluated in the tails of the respective PDFs . The floating-reference hypothesis
assumed at the input to the order-statistics module, denoted by Ho (µ) , is chi-squared with
2 degrees of freedom and a mean equal to the mean of Irl 2 , denoted as p . Therefore, one
needs to determine a new reference hypothesis Ho so that the assumed statistics fo r
H o ( Au) are met . Consider the processing string producing rl to be a module whos e
output is the input to the order-statistics module . Working backwards through the
processing flow diagram in figure 5 (beginning with the computation of Ir L ), one can
determine the statistics for x assuming p(rl- Ho (p)) at the input to the order-statistic s
module. The new Ho is found to be independent, zero-mean, Gaussian noise wit h
variance equal to p. From this, one can now re-derive the statistics for PoB given Ho .
Proceeding in the same manner used in design I to derive p(PoB 1 Ho ) , it is determined
that the PDF is chi-squared with 2(N/2 - M- 2) + 2 degrees of freedom scaled by P/N.

The log J-function can then be computed using these reference hypotheses ; thus ,

j = log p(x Ho) - log P(I 1

Ho) - log p(r I,v , P - H o (p )) - log P(PoB Ho) .

	

( 19 )

With the J-function derived, the module must be validated using the acid test . For
the acid test, the feature set is assumed to consist of PoB , P,,, and the two larges t
amplitudes of Id - and their associated indices . Therefore, z is a six-dimensional feature
vector. Estimation of the feature PDF p(z I H, ,) was done using a Gaussian mixture
(GM) model whose general form, given an N-dimensional feature vector z, is

(20 )

where

N (z ,µ,, E ,) = (2rc) N21
1/2

exp
(21 )µ, )

2

is the multivariate Gaussian function with mean µ ; and covariance E ; . The GM PDF p(z )
is the weighted sum of L Gaussian functions, each parameterized by A ,, = {a

	

, E } ,

where a ; is the mixing weights . The iterative expectation-maximization (EM) algorith m
(reference 5) can be used to estimate the A ; for a given L-component mixture with respect
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to a set of feature observations z A (training data) . The acid test hypothesis H , was
independent, zero-mean, Gaussian noise of variance 100 . The results of the acid test ar e
shown in figure 7 . In the upper plot of figure 7 for p(x I H ,. ) versus p,, (x 1 H, ) , it can b e
seen that the points line up closely to the y = x line, indicating that the 1-function i s
accurate . The lower plot shows the projected PDF error .

Acid Test: HFM Module, 6 Features, 1000 Sample s

-6 .12 -6 .11 -6 .1
px0

-6.09 -6.08 -6.07 -6 .0 6

x 10
4

Figure 7. Acid Test Result for Module Computing Sir Features

The problem observed when using this module to process experimental event data i s
that there are a relatively large number of significant peaks in the time-domain MF outpu t
r L (see figure 8) . This is likely due to multiple signal arrivals as a result of multipat h

propagation . Using all of the significant peaks would lead to a high dimensional featur e
space, which is contrary to the objective of CSM . The next modification (design 3) to th e
module is an attempt to decrease the feature space dimension .

14



Design 3

The third design approach was motivated by observing that the Ir obtained from
the experimental event data consisting of HFM signals appeared to have a somewha t
Gaussian shape . Given that, the next design idea was to model r - as a GM . Using this
approach, the A ; would replace the peaks of

rig
and their associated indices as features .

The implementation of this approach begins by passing Id
-

through a bank of varying
duration Hanning-weighted integrators to detect the peak indices of Gaussian-like pulse s
and to estimate their widths . Using the indices as the GM means and the widths as GM
standard deviations for initial estimates, a maximum-likelihood estimator was used t o
estimate the parameters of the GM model for the detected pulses . A representative Id -

signal computed from experimental HFM signal data, along with its resulting GM mode l
representation, are shown in figure 8 . For this case, two Gaussian pulses were detected ,
resulting in a two-mode GM model .
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Figure 8. Time-Domain MF Output I r 2 (Green) and GM Model Representation (Red)

Validation of this module using the acid test was never performed . The standard aci d
test hypothesis H is independent, zero-mean, Gaussian noise of a given variance . Under
the standard H ,

	

would not have the multi-modal character, as seen in figure 8, bu t
would instead appear more uniformly distributed as a function of sample lag . It would ,
therefore, be inappropriate to model it using a GM and maintain a low-dimensional featur e
space. An alternate H,, would need to be constructed that would meet the multi-moda l
requirement and also result in a p(x I Ht ) , which was known exactly . Rather than
pursuing the development of this alternate H L, , it was decided to explore a further
modification to the module .
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Design 4

The next approach was to segment the IFFT output r into M-sample segments ,
compute the log power of each segment, and then compute the differences of the lo g
powers as features . A hidden Markov model (HMM) was used to statistically model th e
sequence of features . This processing string is depicted in figure 9, where

	

is the n '' '

M-sample sequence derived from the segmentation of r, P' is a vector consisting of th e
sequence of log powers computed from the segments r„ , and the output P ,, is a vector of

log-power differences computed from P as P, (n) = P' - P„ . Determining the
differences of the log-power sequence was performed for conditioning to make it appea r
more like a sequence of discrete states appropriate for modeling using an HMM .

IFFT
P S /

P,(n)=P„ -P„log

	

r„ (i )
Partition :
M-Sample
Segment s

Figure 9. Computation of Log-Power Differences from Segments of r

The complete set of features using this approach is then z = [PB , P,, ] . With the
PDF of P,B modeled using a GM, and the PDF of P 5 , modeled using an HMM, on e
needs to use a mixed modeling approach in computing p(z H,) . Since P,B i s
independent of P, , their PDFs can be estimated independently from training data usin g
the different models to form the complete feature PDF as

p( z I H.) = P(PoB I H )P(P 1, I H.),

	

( 22 )

where hypothesis H, is the HFM signal .

With regard to the J-function, it was shown that under an H o of independent, zero-

mean, Gaussian noise of variance 1, each element of rJ 2 is independent chi-squared with

2 degrees of freedom scaled by 1/2 . Therefore, prior to taking the log, the su m

'

	

)~

2

p = ( i over each segment results in p(pn I H o ) being chi-squared distributed wit h

2M degrees of freedom scaled by 1/2 . The complete PDF over all the segments is then th e

product of the p(p„ I H„) over n . The log function was computed using the log module i n

the Class-Specific Toolkit by passing it the pn . The complete log 1-function is the n

j = logp(x
I H o)-E log P(P„ I Ho) - P(PoB I Ho)+fl og ,

	

(23 )
1 7
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where p(PoB 1 H„) is the same PDF as that used in equation (16), and h og is the log
J-function for the log module . Note that the differencing operation has no impact on th e
J-function .

Once the accuracy of the J-function for this module was verified using the acid test ,
the next step was to use the event data to compute the likelihood in equation (1), in lo g
space, under H, . This was done by separating the events into two subsets, denoted E 1
and E2. First, the feature PDF p(z 1 H,) must be trained using features extracted fro m
E I . Next, equation (1) must be evaluated for each event in E2 using features extracte d
from the given events and combining the likelihood values . The next step is to revers e
the roles of El and E2-train using E2 and evaluate using E 1 .

All of the above obtained likelihood values are then combined to form a tota l
likelihood value for p(x H 1 ) over all the events x k . This procedure is useful i n
comparing the performance of different modules in processing a given class of events .
The module producing the highest likelihood is deemed the best for use in classifying th e
given class .

To benchmark the total likelihood value obtained using this module, it wa s
compared to that obtained from processing the events using the autoregressive (AR )
module in the Class-Specific Toolkit . The AR module is one of the more robust in that i t
performs well for a wide variety of signal classes . The basic operation of the AR modul e
proceeds by dividing the input signal into M-sample segments and computing a P'"-order
AR model (reference 6) for each segment as features . This sequence of AR features i s
statistically modeled using an HMM . The AR module is optimized for a given signa l
class by finding the values of M and P that jointly maximize the total likelihood value .

In comparing the total likelihood values obtained from both the HFM and A R
modules, the AR module produced the higher value . The reason for this appears to be tha t
the background noise is non-stationary over the duration of each event . Correspondingly ,
the spectrum of the event is changing over its duration . Out-band power PoB is the sum
of FFT bins computed using the entire event, which implicitly assumes stationarity-a n
assumption that is violated in this case . Alternately, the AR module computes all of it s
features from segmented data . It can, therefore, adapt to changes in the spectrum durin g
the event, and its feature set better represents this signal class .

To test this conjecture, the procedure for computing the total likelihoods for bot h
the HFM and AR modules was repeated, but this time synthetic white Gaussian noise wa s
added to each of the events. It should be pointed out that the signal-to-noise ratio s
(SNRs) of each of the events are extremely large, so the addition of a relatively smal l
level of noise will not obscure the signal . One needs to add just enough noise so that th e
additive noise becomes dominant over the background noise present in the events . At
that point, the resulting background signal will be stationary . As the level of the additive
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noise was increased, the difference between the total likelihoods for the module s
decreased, and the HFM module likelihood eventually was greater than that of the A R

module's . The SNR at this point was still extremely large . With the stationarity
assumption met, the HFM module is better . However, the preceding observatio n
regarding computing all features from segmented data affording better adaptability led t o
the final HFM module design (design 5) .

Design 5

The final HFM module design is the most simple of all of the preceding versions . In
fact, it simply comprises a matched-filtering operation cascaded with the AR module . I t
uses a hybrid linear-hyperbolic FM (LHFM) signal as the replica in the MF . A block
diagram of this module is shown in figure 10 . The operations in the dashed rectangle can
be viewed as a pre-processor to the AR module since it has a J-function equal to 1 . To
illustrate, under Ho of independent, zero-mean, Gaussian noise of variance 1, the FF T
output bins will be zero-mean, Gaussian-distributed with variance N . The magnitude o f
the spectrum of the replica is 1 across all bins; therefore, the MF operation does not
change the statistics . At the output of the IFFT, the samples are independent, zero-mean ,
Gaussian RVs with variance 1 ; thus, p(x I Ho ) = p(z I H„) for the pre-processor .
Therefore, the complete J-function for this HFM module is that of the AR module .

Replica*
b

F FT Condition
Spectrum

-------------------- -

AR Modul e

----------------- -

Inp * FFT

	

Matched

	

IFFT
X

	

Filter

Pre-processor

Figure 10. Final HFM Module Design

The LHFM replica was designed to maintain the HFM replica in the FI to F2 band
and to fill the bands above and below with LFM signals . The PSD of the replica is show n
in the upper portion of figure 11 and its spectrogram is shown in the lower portion . In
designing the replica, care was taken to ensure that the signal phase was continuou s
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between the LFM-HFM transitions . The use of the LHFM replica was driven by the nee d
to have a signal with a white spectrum at the output of the IFFT under H 0 . This was
accomplished by conditioning the spectrum of the LHFM replica prior to the MF (se e
figure 10) . The conditioning consists of normalizing the magnitudes of all the FFT bins t o
one, resulting in an all-pass filter . The entire spectrum of the input signal will be passe d
through the MF, thereby eliminating the separation into in-band and out-band components .
All of the features can then be computed on a per-segment basis using the AR module . As
before, an HMM is used to statistically model the features . Because the pre-processor
produces the desired compression for the HMM, the likelihood using this module is greate r
than that using the AR module alone . As discussed before, the module can be optimize d
for a given signal class by finding the values of M and P that jointly maximize the tota l
likelihood . The pre-processor can also be used in conjunction with other class-specifi c
feature modules to compress any type of frequency-modulated input signal, provided that a
reasonably accurate replica can be designed . In fact, this pre-processor is used as part of a
recently developed module that computes a joint set of broadband and narrowband feature s
using AR for broadband and a spectral projection technique for narrowband components .
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Figure 11. PSD (Top) and Spectrogram (Bottom) of LHFM Replica
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4. CONCLUSIONS

Class-specific method (CSM) module design requires careful attention to detail .
Fundamental CSM concepts were presented as an introduction to the signal classificatio n
technique . As an illustrative example in module design, the detailed steps in th e
development of a class-specific HFM module were described . Four designs were
pursued and rejected until the final design-using a matched-filter pre-processo r
combined with the autoregressive (AR) module-was determined to achieve a highe r
likelihood than using the AR module alone . This approach proved to be the simplest, an d
it outperformed the robust general AR approach that is often used as a benchmar k
module. Additionally, the final design provides a generic module that can be used fo r
any signal for which a replica can be developed .
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